УДК 796+615.015.8

ПРОФИЛЬ УСТОЙЧИВОСТИ К АНТИБИОТИКАМ *ESCHERICHIA COLI* У ДЕТЕЙ С РАЗНЫМ УРОВНЕМ ФИЗИЧЕСКОЙ АКТИВНОСТИ

O.П. Иккерт 1,2 , B.A. Шепилова 1,2 , Л.С. Бандурова 1 , M.A. Бирт 1 , A.B. Кабачкова 1

¹Национальный исследовательский Томский государственный университет, Томск, Россия

Аннотация. Цель: изучить профиль устойчивости к антибиотикам E. coli у детей младшего школьного возраста с разным уровнем физической активности. Материалы и методы. В исследовании участвовали две группы условно здоровых детей (по 12 волонтеров) с равномерным распределением по полу и возрасту (8-10 лет) без симптомов острых заболеваний. Дети первой группы не занимались дополнительной физической активностью, дети второй – занималась Образцы тхэквондо более двух лет. кала собирали транспортировали в лабораторию и высевали на среду Эндо для выделения штаммов Е. coli. Чувствительность к антибиотикам (амоксициллин, цефазолин, амикацин, цефтриаксон, тетрациклин) оценивали путем добавления растворов антибиотиков в среду с последующим посевом штаммов E. coli и инкубацией. **Результаты.** В первой группе было выделено 19 штаммов, ИЗ которых 15 проявили устойчивость к амоксициллину, 9 - к цефазолину и цефтриаксону, 6 - к амикацину, 1 к тетрациклину. Во второй группе из выделенных 13 штаммов только 6 оказались устойчивыми к амоксициллину, 2 - к цефазолину и цефтриаксону, 1 – к амикацину, и ни одного к тетрациклину. Уровень КОЕ устойчивой $E.\ coli$ в первой группе варьировался от $1,3\times10^4$ до $1,2\times10^6$

²Томский сельскохозяйственный институт, Томск, Россия

 KOE/Γ , что свидетельствует о повышенном риске формирования штаммов при отсутствии дополнительной устойчивых физической активности. Во второй группе значения были ниже на 2 порядка: от 3×10^2 до 2.6×10^4 КОЕ/г. Заключение. Физическая активность, хотя и не проблему антибиотикорезистентности, полностью способствовать улучшению общего состояния микробиома. Вероятно, отсутствие оптимального уровня физической активности связано с повышенным риском формирования устойчивых к антибиотикам штаммов. Ограниченное устойчивых наличие штаммов группе детей, свидетельствует сниженной занимающихся тхэквондо, иммунологической нагрузке, a также может ЯВЛЯТЬСЯ следствием возможных различий в рационе питания и образе жизни детей.

Ключевые слова: физическая культура, тхэквондо, антибиотикорезистентность, кишечная палочка, микробиота кишечника, младший школьный возраст.

Введение. Устойчивость бактерий к антибиотикам представляет собой одну из самых серьезных проблем общественного здравоохранения в современном мире [1]. С увеличением частоты случаев резистентности эффективность применения различных классов антибиотиков снижается, что ставит под угрозу успешное лечение инфекционных заболеваний в целом. Большинство исследований, посвященных устойчивости кишечной палочки или Escherichia coli (далее – E. coli) к антибиотикам, проводились на клинических образцах, так как именно E. coli является одной из наиболее распространенных причин внутрибольничных и внебольничных бактериальных инфекций [9, 10]. Но это ограничивает понимание динамики антибиотикорезистентности в более широком контексте. В то же время, исследования, включающие здоровых людей, особенно детей, остаются малочисленными. Это создает пробел в знаниях о том, как

факторы образа жизни, включая физическую активность, могут влиять на распространенность устойчивости микроорганизмов к антибиотикам. Наличие устойчивых штаммов *E. coli* может изменять соотношение одних микроорганизмов к другим, что будет, безусловно, значимым для организма-хозяина. Доказано, что микробиота имеет сложные оси отношений с различными системами организма (как в норме, так и при патологии) [7]. Изменения в её составе [14, 22] могут способствовать прогрессированию, а иногда и возникновению заболеваний. В настоящее время уже показана связь между состоянием микробиоты кишечника и неврологическими расстройствами [20], ожирением [12, 19], болезнью Альцгеймера [4], рассеянным склерозом [21], болезнью Паркинсона [8] и шизофренией [17].

Понимание способствующих факторов, устойчивости микроорганизмов к антибиотикам, особенно у детей, может стать ключом разработке эффективных стратегий профилактики инфекционных заболеваний и способствовать улучшению здоровья населения. Физическая активность, как важный аспект образа жизни, может оказывать влияние на состав и функции кишечной микробиоты, способствуя её улучшению [15]. Наряду с этим регулярные физические нагрузки снижают уровень воспалительных процессов в организме [23]. Однако связь между уровнем физической активности И распространенностью антибиотикорезистентности бактерий у детей ранее не изучалась.

Цель исследования: изучить профиль устойчивости к антибиотикам *E. coli* у детей младшего школьного возраста с разным уровнем физической активности.

Материалы и методы. В исследовании приняли участие две группы условно здоровых детей, каждая из которых состояла из 12 волонтеров с равномерным распределением по полу и возрасту без симптомов острых вирусных и/или бактериальных заболеваний. Возраст детей варьировался

от 8 до 10 лет. Первая группа состояла из детей, которые не занимались дополнительными физическими нагрузками, кроме обязательных занятий по физической культуре в школе. Вторая группа включала детей, которые дополнительно регулярно посещали секцию боевых искусств (тхэквондо) более двух лет. Все дети на протяжении последних 6 месяцев не принимали антибиотики или препараты, влияющие непосредственно на микробиоту кишечника. Критериями исключения были острые аллергические реакции и отсутствие согласия родителей на участие детей в исследовании.

Образцы кала собирали однократно преимущественно в утренние часы и помещали в стерильные пластиковые контейнеры объемом 50 мл и хранили в холодильнике при температуре 2–4°С на протяжении 2–4 часов до транспортировки в лабораторию. В лаборатории образцы кала разделяли на аликвоты в предварительно маркированные криопробирки объемом 2 мл и замораживали при температуре –80°С для последующего анализа.

После завершения сбора всех образцов проводили микробиологические посевы на дифференциально-диагностическую среду Эндо для выделения штаммов *E. coli*. Для этого 0,1 грамм фекалий растворяли в 100 мл стерильной воды, а затем 0,1 мл суспензии распределяли по всей поверхности чашки Петри со средой Эндо. Культивирование проводили в термостате при температуре 37 °C в течение 48 часов. Полученные колонии пересевали в отдельные чашки Петри со средой Эндо. Идентификация *E. coli* осуществляли на основе характерного колониального роста, микроскопирования и секвенирования гена 16S рРНК. Секвенирование гена 16S рРНК проводили для некоторых штаммов, колонии которых не имели классического металлического блеска на среде Эндо. ДНК из этих штаммов была выделена с помощью коммерческого набора HiPure Universal DNA Kit (Китай). Амплификацию проводили с использованием праймеров 27F и 1492R. Продукты ПЦР визуализировали с помощью электрофореза на 1% агарозном геле и отправляли в Научно-производственную компанию «СИНТОЛ» (г. Москва). Филогенетический анализ нуклеотидной последовательности проводили с использованием пакета программ BLAST и базы данных GenBank.

Для оценки чувствительности выделенных штаммов *E. coli* к антибиотикам использовался метод, при котором раствор антибиотика добавляли непосредственно в среду Эндо. В исследовании были использованы широко назначаемые антибиотики, в том числе в детском возрасте – амоксициллин [16], цефазолин [11], амикацин [24], цефтриаксон [5] и тетрациклин [2]. Сравнительная характеристика используемых лекарственных препаратов представлена в таблице ниже (табл. 1).

Таблица 1

Table 1

Сравнительная характеристика антибиотиков

Comparative characteristics of antibiotics

Цефазолин Cefazolin	Цефтриаксон Ceftriaxone	Амоксициллин Amoxicillin	Амикацин Amikacin	Тетрациклин Tetracycline
Цефалоспорины (1-е поколение) Cephalosporins (1st generation)	Цефалоспорины (3-е поколение) Cephalosporins (3rd generation)	Пенициллины Penicillins	Аминогликозиды Aminoglycosides	Тетрациклины Tetracyclines
A -	синтез клеточной сте s bacterial cell wall sy	Ингибирует синтез белка в бактериях, связываясь с рибосомами Inhibits protein synthesis in bacteria by binding to ribosomes		
Грам+ нек. Грам– Gram+ some Gram–	широкий спектр (Грам+ и Грам-) wide spectrum (Gram+&Gram-)	Грам+ нек. Грам– Gram+ some Gram—	Грам— Gram—	широкий спектр (Грам+ и Грам–) wide spectrum (Gram+&Gram–)
[11]	[5]	[13]	[24]	[2]

Примечание. Грамположительные бактерии или Грам+ имеют толстый слой пептидогликана и окрашиваются по Граму; грамотрицательные бактерии или Грам— имеют тонкий слой пептидогликана и не окрашиваются по Граму, а также более устойчивы к антибиотикам; нек. — некоторые.

Note. Gram-positive bacteria or Gram+ have a thick layer of peptide glycan and stain with Gram; Gram-negative bacteria or Gram- have a thin layer of peptide glycan and do not stain with Gram and are also more resistant to antibiotics.

Были использованы следующие концентрации антибиотиков в растворе: амоксициллин – 50 мкг/мл и 100 мкг/мл; цефазолин – 20 мкг/мл; амикацин – 20 мкг/мл; цефтриаксон – 5 мкг/мл; тетрациклин – 5 мкг/мл. После добавления антибиотиков в среду проводили посев выделенных штаммов, а затем инкубировали при 37°С в течение 48 часов. Наличие или отсутствие колоний указывало на чувствительность или устойчивость штаммов *E. coli* к соответствующим антибиотикам. Дополнительно была проведена оценка количества штаммов *E. coli*, устойчивых к антибиотику амоксициллину. Для этого использовался метод предельных разведений: 1 г фекалий растворяли в 10 мл воды (1-е разведение), затем из 1-го разведения брали 1 мл и растворяли в 10 мл воды (2-е разведение) и так далее. Каждое разведение высевали на среду Эндо с амоксициллином в концентрациях 50 мкг/мл и 100 мкг/мл. После инкубации проводили подсчет колоний.

Результаты исследования и их обсуждение. В ходе исследования были проанализированы образцы *E. coli*, выделенные из микробиоты детей. В первой группе детей, кишечника не занимающихся дополнительными физическими нагрузками, было выделено 19 различных штаммов E. coli из 12 проб (в семи пробах были обнаружены по два штамма, а в пяти пробах – по одному штамму). Во второй группе детей, занимающихся дополнительно тхэквондо, из 12 проб было выделено 13 штаммов E. coli. При этом в одной из проб были обнаружены два штамма, а в остальных пробах - по одному штамму. При исследовании устойчивости выделенных штаммов к антибиотикам результаты показали, 19 проявили устойчивость что штаммов первой группы амоксициллину – 15. Кроме того, девять штаммов оказались устойчивыми к цефазолину и цефтриаксону, шесть штаммов – к амикацину, и лишь один штамм продемонстрировал устойчивость к тетрациклину (табл. 2).

Table 2 Устойчивость штаммов *E. coli* к антибиотикам у детей, не занимающихся дополнительными физическими нагрузками Resistance of *E. coli* strains to antibiotics in children not engaged

in additional physical activity

Проба Sample	Количество выделенных штаммов Number of strains isolated					
	Bcero Total	Цефазолин Cefazolin	Цефтриаксон Ceftriaxone	Амикацин Amikacin	Тетрациклин Tetracycline	Амоксициллин Amoxicillin
1	1	1		1		1
2	2		2	1	1	2
3	1		1	1		1
4	2	2				1
5	2		2			1
6	1	1				1
7	1			1		1
8	2	2	1			1
9	2	1		1		1
10	2		2			2
11	2	2				2
12	1		1	1		1
Bcero Total	19	9	9	6	1	15

Наблюдение о том, что два штамма из одной пробы устойчивы к одному и тому же антибиотику, является важным индикатором наличия у них схожих генов устойчивости. Это может быть результатом, горизонтального переноса генов, так и мутации, но в контексте данного исследования более вероятным объяснением является именно перенос, что подчеркивает важность горизонтальный мониторинга антибиотикам eë устойчивости механизмов К И понимания распространения среди патогенных микроорганизмов.

Таблица 2

Что касается второй группы, из 13 выделенных штаммов лишь шесть оказались устойчивыми к амоксициллину, из них два штамма проявили устойчивость к цефазолину, два штамма – к цефтриаксону, один штамм – к амикацину, и ни один из штаммов не показал устойчивости к тетрациклину (табл. 3).

Table 3
Устойчивость штаммов *E. coli* к антибиотикам у детей,
занимающихся тхэквондо
Antibiotic resistance of *E. coli* strains in children practicing taekwondo

Таблица 3

Пробо	Количество выделенных штаммов Number of strains isolated					
Проба Sample	Bcero Total	Цефазолин Cefazolin	Цефтриаксон Ceftriaxone	Амикацин Amikacin	Тетрациклин Tetracycline	Амоксициллин Amoxicillin
13	1	1				1
14	1		1			
15	1			1		1
16	1		1			1
17	1	1				1
18	1					
19	1					
20	1					1
21	2					1
22	1					
23	1					
24	1					
Bcero Total	13	2	2	1	0	6

Подсчет числа колониеобразующих единиц (далее – КОЕ) $E.\ coli$ устойчивой к амоксициллину в концентрации 100 мкг/мл в образцах первой группы показал вариабельность от $1,3\times10^4$ до $1,2\times10^6$ КОЕ/г. Полученные данные свидетельствуют о том, что у детей, посещающих только обязательные занятия по физической культуре в школе, имеется повышенный риск формирования устойчивых к антибиотикам штаммов

 $E.\ coli.$ В долгосрочной перспективе это может негативно сказаться на состоянии здоровья таких детей. Во второй группе, состоящей из детей, регулярно занимающихся тхэквондо, количество КОЕ было ниже на два порядка. Минимальное значение в этой группе составило 3×10^2 КОЕ/г, а максимальное -2.6×10^4 КОЕ/г (табл. 4).

Table 4
Концентрация колоний *E. coli*, устойчивых к амоксициллину в наблюдаемых группах, кл×10⁴ КОЕ/г
Concentration of E. coli colonies resistant to amoxicillin in the observed groups, cells×10⁴ CFU/g

Дети без дополнит нагрузки (пе Children without addit (first §	tional physical activity	Дети, регулярно занимающиеся тхэквондо (вторая группа) Children who regularly practice taekwondo (second group)		
Проба Sample	Среднее КОЕ <i>E.coli</i> Average CFU <i>E.coli</i>	Проба Sample	Среднее КОЕ <i>E.coli</i> Average CFU <i>E.coli</i>	
1	26,7	13	2,50	
2	102,7	14		
3	2,4	15	0,04	
4	25,0	16	2,67	
5	20,0	17	1,70	
6	2,6	18		
7	1,0	19		
8	50,7	20	0,03	
9	64,0	21	1,30	
10	107,0	22		
11	124,7	23		
12	1,3	24		

Важно отметить, шести образцах данной группы ЧТО В ИЗ антибиотикорезистентные штаммы не были обнаружены ни к одному из проверяемых антибиотиков. Эти результаты могут указывать на более систему низкую нагрузку на иммунную детей, занимающихся дополнительной физической активностью, а также на возможные различия

Таблица 4

в их рационе питания и образе жизни, что может способствовать снижению вероятности развития резистентности микроорганизмов.

Заключение. Накопленные данные свидетельствуют о том, что физическая активность может оказывать положительное влияние на состояние микробиоты [3, 6. 15. 18]. Данное исследование продемонстрировало значительное влияние физической активности на уровень устойчивых к антибиотикам штаммов E. coli в кишечной микробиоте. У детей, регулярно посещающих секцию боевых искусств длительное время, наблюдается более низкий уровень устойчивости штаммов бактерий к антибиотикам по сравнению с детьми без дополнительных физических нагрузок. Это может быть связано с положительным влиянием физической активности на иммунную систему в целом и профилактику устойчивости микроорганизмов к антибиотикам. Полученные результаты подтверждают гипотезу о том, что регулярные занятия спортом создают благоприятные условия для профилактики антибиотикорезистентности и положительно влияют на здоровье детей в долгосрочной перспективе.

Финансирование. Исследование выполнено за счет гранта Российского научного фонда (проект № 24-25-00304).

Список литературы / References

- 1. Aggarwal R., Mahajan P., Pandiya S., Bajaj A. et al. Antibiotic resistance: a global crisis, problems and solutions. *Critical Reviews in Microbiology*, 2024, vol. 50, no. 5, pp. 896–921. DOI: 10.1080/1040841X.2024.2313024.
- 2. Arrieta-Ortiz M.L., Pan M., Kaur A., Pepper-Tunick E. et al. Disrupting the ArcA Regulatory Network Amplifies the Fitness Cost of Tetracycline Resistance in *Escherichia coli. mSystems*, 2023, vol. 8, article e0090422. DOI: 10.1128/msystems.00904-22.

- 3. Barton W., Penney N.C., Cronin O., Garcia-Perez I. et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. *Gut*, 2018, vol. 67, no. 4, pp. 625-633. DOI: 10.1136/gutjnl-2016-313627.
- 4. Cattaneo A., Cattane N., Galluzzi S., Provasi S. et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. *Neurobiology of Aging*, 2017, vol. 49, pp. 60-68. DOI: 10.1016/j.neurobiologing.2016.08.019.
- 5. Ching C., Zaman H.H. Identification of Multiple Low-Level Resistance Determinants and Coselection of Motility Impairment upon Sub-MIC Ceftriaxone Exposure in *Escherichia coli. mSphere*, 2021, vol. 6, article e0077821. DOI: 10.1128/mSphere.00778-21.
- 6. Clarke S.F., Murphy E.F., O'Sullivan O., Lucey A.J. et al. Exercise and associated dietary extremes impact on gut microbial diversity. *Gut*, 2014, vol. 63, no. 12, pp. 1913-1920. DOI: 10.1136/gutjnl-2013-306541.
- 7. Ding R.X., Goh W.R., Wu R.N., Yue X.Q. et al. Revisit gut microbiota and its impact on human health and disease. *Journal of Food and Drug Analysis*, 2019, vol. 27, no. 3, pp. 623-631. DOI: 10.1016/j.jfda.2018.12.012.
- 8. Forsyth C.B., Shannon K.M., Kordower J.H., Voigt R.M. et al. Increased intestinal permeability correlates with sigmoid mucosa alphasynuclein staining and endotoxin exposure markers in early Parkinson's disease. *PLOS ONE*, 2011, vol. 6, article e28032. DOI: 10.1371/journal.pone.0028032.
- 9. Hashiguchi Y., Oda K., Katanoda T., Nosaka K. et al. Clinical evaluation of cefotiam in the treatment of bacteremia caused by *Escherichia coli, Klebsiella species*, and *Proteus mirabilis*: A retrospective study. *Journal of Infection and Chemotherapy*, 2020, vol. 26, no. 11, pp. 1158-1163. DOI: 10.1016/j.jiac.2020.06.007.

- 10. Johnson L.S., Patel D., King E.A., Maslow J.N. Impact of microbiology cascade reporting on antibiotic de-escalation in cefazolin-susceptible Gram-negative bacteremia. *European Journal of Clinical Microbiology & Infectious Diseases*, 2016, vol. 35, no. 7, pp. 1151-1157. DOI: 10.1007/s10096-016-2645-5.
- 11. Kawamura M., Ito R., Tamura Y., Takahashi M. et al. Overproduction of Chromosomal ampC β-Lactamase Gene Maintains Resistance to Cefazolin in Escherichia coli Isolates. *Microbiology Spectrum*, 2022, vol. 10, article e0005822. DOI: 10.1128/spectrum.00058-22.
- 12. Le Chatelier E., Nielsen T., Qin J., Prifti E. et al. Richness of human gut microbiome correlates with metabolic markers. *Nature*, 2013, vol. 500, no. 7464, pp. 541-546. DOI: 10.1038/nature12506.
- 13. Lekang K., Shekhar S., Berild D., Petersen F.C. et al. Effects of different amoxicillin treatment durations on microbiome diversity and composition in the gut. *PLOS ONE*, 2022, vol. 17, article e0275737. DOI: 10.1371/journal.pone.0275737.
- 14. Li C., Li J., Zhou Q., Wang C. et al. Effects of Physical Exercise on the Microbiota in Irritable Bowel Syndrome. *Nutrients*, 2024, vol. 16, article 2657. DOI: 10.3390/nu16162657.
- 15. Mohr A.E., Jäger R., Carpenter K.C., Kerksick C.M. et al. The athletic gut microbiota. *Journal of the International Society of Sports Nutrition*, 2020, vol. 17, article 24. DOI: 10.1186/s12970-020-00353-w.
- 16. Nasrollahian S., Graham J.P., Halaji M. A review of the mechanisms that confer antibiotic resistance in pathotypes of *E. coli. Frontiers in Cellular and Infection Microbiology*, 2024, vol. 14, article 1387497. DOI: 10.3389/fcimb.2024.1387497.
- 17. Nemani K., Hosseini Ghomi R., McCormick B., Fan X. Schizophrenia and the gut-brain axis. *Progress in Neuropsychopharmacology*

- and Biological Psychiatry, 2015, vol. 56, pp. 155-160. DOI: 10.1016/j.pnpbp.2014.08.018.
- 18. Petersen L.M., Bautista E.J., Nguyen H., Hanson B.M. et al. Community characteristics of the gut microbiomes of competitive cyclists. *Microbiome*, 2017, vol. 5, article 98. DOI: 10.1186/s40168-017-0320-4.
- 19. Sonnenburg J.L., Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. *Nature*, 2016, vol. 535, no. 7610, pp. 56-64. DOI: 10.1038/nature18846.
- 20. Sorboni S.G., Moghaddam H.S., Jafarzadeh-Esfehani R., Soleimanpour S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. *Clinical Microbiology Reviews*, 2022, vol. 35, article e0033820. DOI: 10.1128/CMR.00338-20.
- 21. Tremlett H., Fadrosh D.W., Faruqi A.A., Zhu F. et al. Gut microbiota in early pediatric multiple sclerosis: a case-control study. *European Journal of Neurology*, 2016, vol. 23, no. 8, pp. 1308-1321. DOI: 10.1111/ene.13026.
- 22. Wang M., Chen Y., Song A.X., Weng X. et al. The Combination of Exercise and Konjac Glucomannan More Effectively Prevents Antibiotics-Induced Dysbiosis in Mice Compared with Singular Intervention. *Nutrients*, 2024, vol. 16, article 2942. DOI: 10.3390/nu16172942.
- 23. Zhang L., Liu Y., Sun Y., Zhang X. Combined Physical Exercise and Diet: Regulation of Gut Microbiota to Prevent and Treat of Metabolic Disease: A Review. *Nutrients*, 2022, vol. 14, article 4774. DOI: 10.3390/nu14224774.
- 24. Zhong Z.X., Cui Z.H., Li X.J., Tang T. et al. Nitrofurantoin Combined With Amikacin: A Promising Alternative Strategy for Combating MDR Uropathogenic *Escherichia coli. Frontiers in Cellular and Infection Microbiology*, 2020, vol. 10, article 608547. DOI: 10.3389/fcimb.2020.608547.

Информация об авторах

Иккерт Ольга Павловна, кандидат биологических наук, старший научный сотрудник лаборатории менеджмента здоровья и физической активности, доцент Передовой инженерной школы «Агробиотек», Томский государственный университет, Томск, пр. Ленина, д. 36; доцент кафедры ветеринарии Томского сельскохозяйственного института, пл. Соляная, 11, Томск, but310@mail.ru.

Шепилова Валерия Анатольевна, аспирант, младший научный сотрудник лаборатории менеджмента здоровья и физической активности, Томский государственный университет, Томск, пр. Ленина, д. 36; ассистент кафедры ветеринарии Томского сельскохозяйственного института, пл. Соляная, 11, Томск, shepilova.valeria@yandex.ru.

Бандурова Лилия Сергеевна, студент, лаборант лаборатории менеджмента здоровья и физической активности, Томский государственный университет, Томск, пр. Ленина, д. 36, bandurova.lilia@yandex.ru

Бирт Мария Александровна, студент, старший лаборант кафедры генетики и клеточной биологии, Томский государственный университет, Томск, пр. Ленина, д. 36, marybirt.sov@gmail.com.

Кабачкова Анастасия Владимировна, доктор биологических наук, спортивно-оздоровительного профессор кафедры доцент, туризма, спортивной физиологии и медицины; ведущий научный сотрудник лаборатории менеджмента здоровья и физической активности, Томский университет, государственный Томск, Ленина, 36. пр. Д. kabachkova.av@yandex.ru.

Information about authors

Olga P. Ikkert, PhD in Biology, Senior Researcher, Laboratory of Health and Physical Activity Management, Associate Professor, Advanced Engineering School «Agrobiotek», Tomsk State University, Tomsk, Lenin Ave., 36;

Associate Professor, Department of Veterinary Science, Tomsk Agricultural Institute, Solyanaya Square, 11, Tomsk, but310@mail.ru.

Valeria A. Shepilova, postgraduate student, junior researcher of the laboratory of health and physical activity management, Tomsk State University, Tomsk, Lenin Ave., 36; assistant of the department of veterinary science of Tomsk Agricultural Institute, Solyanaya pl., 11, Tomsk, shepilova.valeria@yandex.ru.

Liliya S. Bandurova, student, laboratory assistant of the laboratory of health management and physical activity, Tomsk State University, Tomsk, Lenin Ave., 36, bandurova.lilia@yandex.ru.

Maria A. Birt, student, senior laboratory assistant of the department of genetics and cell biology, Tomsk State University, Tomsk, Lenin Ave., 36, marybirt.sov@gmail.com.

Anastasia V. Kabachkova, doctor of biological sciences, professor of the department of sports and health tourism, sports physiology and medicine; Leading researcher of the scientific laboratory of health management and physical activity, Tomsk State University, Tomsk, Lenin Ave., 36, kabachkova.av@yandex.ru.

- **O.P. Ikkert**, but310@mail.ru, https://orcid.org/0000-0003-0251-5713
- V.A. Shepilova, smelisheva@ya.ru, https://orcid.org/0009-0007-2066-2131
- L.S. Bandurova, bandurova.lilia@yandex.ru, https://orcid.org/0009-0002-7511-6844
- M.A. Birt, marybirt.sov@gmail.com, https://orcid.org/0009-0005-7024-9471
- **A.V. Kabachkova**, kabachkova.av@yandex.ru, https://orcid.org/0000-0003-1691-0132

National Research Tomsk State University, Tomsk, Russian Federation Tomsk Agricultural Institute, Tomsk, Russian Federation **Вклад авторов:** все авторы сделали эквивалентный вклад в подготовку публикации. Авторы заявляют об отсутствии конфликта интересов.

Contribution of the authors: the authors contributed equally to this article. The authors declare no conflict of interests.